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Abstract

This paper presents an efficient procedure for analyzing naturally curved and twisted beams with general cross-sec-
tional shapes. The hypothesis concerning the cross-sectional shapes of the beams is abandoned in this analysis, and rel-
atively general equations are derived for the analysis of such a structure. Solving directly such equations for various
boundary conditions, which take into account the effects of torsion-related warping as well as transverse shear defor-
mations, can yield the solutions to the problem. The solutions can be used to calculate various internal forces, stresses,
strains and displacements of the beams. The present theory will be used to investigate the stresses and displacements of
a cantilevered curved beam subjected to action of arbitrary load. The numerical results are very close to the FEM
results.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Static and dynamic analysis of naturally curved and twisted beams has many important applications in
mechanical and civil engineering. The problem is urgently needed to be thoroughly studied in engineering
structures, especially in bridge structures associated with curved beams. Washizu (1964) presented an
approximate theory of the beams and derived a system of governing equations. The unknowns in these
equations are the displacement components (us,ue, u,, s, Pz, @,) together with a generalized warping
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coordinate (o). The solutions of these equations, however, were not obtained. The work of Aimin et al.
(2002), developed such a theory and provided such an example where the beams are considered to have
a double symmetric cross-section, a fact which clearly restricts the applicability of these equations.

This paper aims to derive a differential equation for generalized warping coordinate o which involves the
St. Venant torsional warping function, the equation applicable to the case of the beams with general cross-
sectional shapes subjected to arbitrary load. Obviously, such a system of equations is of practical use for a
variety of engineering applications.

Let the locus of the cross-sectional centroid of a beam be a continuum curve in space, the tangential,
normal and bi-normal unit vectors of the curve / are t, n and b, respectively. The Frenet-Serret formulae,
for a smooth curve, is:

t, = kln, n’ = —klt + kzb, ])/ = —kzn, (1)

where (t)' = %, s, k1 and k, are arc coordinate, curvature and torsion respectively of the curve.
In the cross-section of the beam we introduce &- and g-directions in coincidence with the principal axes
through the centroid Oy, as shown in Fig. 1. The angle between the &-axis and normal » is represented as 0,

which is generally a function of s. If the unit vectors of O, and O, are represented by i; and i,, then

i =ncos0+ bsin0,

i, = —nsin 0+ bcos 0. @
From Egs. (1) the following expressions are obtained:

t = kyi; — ke,

i = —kyt + ki, (3)

l'i = kg“t — ksi§7

in which k; = k; sin 0, k, = k1 cos 0, ks =k, + 0.
The stress—strain relations of the material are given in the local rectangular coordinates in the form
(Washizu, 1964):

OJ” = 62#(605/3)7 ;L,M,OC,ﬁ = 172737 (4)

where ¢** and ejj are the stress and strain tensors defined with respect to the local rectangular coordinates.
These tensors are related with those defined with respect to the curvilinear coordinates by the following
relationships:

Fig. 1. Geometry of the beam.
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= 5
dox Oar ' (5)

0o Oo”
Cu = @a_y” Kp* (6)

We shall denote the components of ™" and eyp by (05,0¢,0,, Tsz, Ty Tey) AN (€ss, €2, €4, €55 €5y E21),
respectively, and the assumptions based on the slenderness of the beam will be employed. The stress com-
ponents g¢, o, and 1, are assumed to be small compared with those remaining we may put (Washizu, 1964)

Oc =0y =Ty =0, ()
in the stress—strain relations. If the material of the beam is assumed to be isotropic, Eqs. (4) and (7) yield:
0y = Eey, 1y =2Gey, 14 =2Gey,, (8)

in which E is Young’s modulus of elasticity and G is the shear modulus of the material.

2. Internal forces, equilibrium equations and geometry equations

Simplifying stress vectors to the centroid O; on the cross-section A, the principal vector Q and principal
moment M can be obtained, of which components are respectively denoted by Qs, O¢, O, and M, M, M,,
S0:

0=0+ Qg"ié + Qnim M =Mt + M:i; + M,iy,

where Q; is axial force, O and Q, are shear forces, M; is torque, M: and M, are bending moments, as
shown in Fig. 2. the external forces and moments per unit length along the axis of the beam are indicated
by p and m as

P = Dt + p:i; —O—p”i,77 m = mgt + meic + myi,.

The equilibrium equations are:
d
4512} — [K]-{Q} + {p} = {0},

(M)~ (K] (M) ~ [H]-{Q) + {m} = {0},

Fig. 2. Stress resultants developed on a typical beam element.
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where
{Q} = [Qs Q§ Q;;]T7 {M} = [Ms M: M’]]Ta
{p}y=1lpsp:p)'s {m} = [momem]",
0 ky, —k: 0 0 0
K= |-k, O ks |, [H]= [0 0 1}
ke —ky 0O 0 -1 0

The general solutions are Hanwei and Peiyuan (1997) and Yuchun et al. (1999):
@ = (12~ [ pras).
0 . (10)
{M} = [4]- {{Mo} +/0 [A]"- ([H] - [4]- (@} +{Q'}) — {m} dS}7
where {Qy} and {M,} are integration constants, {Q"} = — f(;[A}T -{p}ds.
If the base vectors of special fixed right-handed rectangular coordinate system are iy, i, i-, then:
t-i, t-i, t-i
A= |ic-0, @:-i, @:-1.]. (11)
by i -1, @y-1
The geometry equations are:
& = Uy — kyuz + kewy, e = ui 4 kyug — kg, — @,
& = u; — keus + ks + @z, 05 = @) — ky@: + ke, (12)
We = q)lcj + kypy — ksq)m Wy = (P:, — ke + ksq)cf,

where, &, ¢, ¢, ws, we, 0, are respectively generalized strains corresponding to generalized stresses O, Ok,
Oy, Mg, M, My, and ug, ug, u,, ¢s, ¢, @, are generalized displacements corresponding to loads ps, pe, p,, ms,
me, m,. The boundary conditions should be given by prescribed the following qualities

Q,orug, Q:oru, Q, oru, More, M:or¢@;, M,oru, (13)

Egs. (12) can be rewritten as:

< 10}~ K] {0} — {0} = (0},

L (14)
o tu) — (K] {u} — [H] - {o} — {e} = {0},
where
{(/’} = [(Ps Pe (/)17}]-, {”} = [us Ug uﬂ]Ta
{0} = [0, 0: 0], {e} = [sx ¢ 8],
so the general solutions to the geometry equations are:
{o} =[4]- (oo} +{o"}),
(15)

{u} = [4]- {{Uo} +/OS[A]T ~({e} + [H] - [A]({po} + {tp*}))dS},

in which {¢o} and {U,} are integration constants, {¢*} = [; (A" {w}ds.
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3. The St.Venant torsional warping function and equivalent constitutive equations

Assuming that the deformations of the beam consist of stretching, bending and torsion,then the displace-
ment field can be written in the following form:

u=wt+Ui; + Vi, (16)
in which:

W = us(s) +ne:(s) — Eo,(s) + als)o(E,n),

U =ug(s) —nos(s), V =us)+ ols),

here, ¢(&,n) is the warping function of the St.Venant torsion of a cylindrical shaft which has the same cross-
section as the beam under consideration (Timoshenko and Goodier, 1974). Eq. (16) takes into account the
effects of torsion-related warping as well as that of transverse shear deformations. The distributions of
strain eg, €5 and eg,, on the cross-section, are:

\/gess :85-’-11(1)5 fwn‘f'\/-(P“ +k [(666) (2:3)5]0(
Rl7)

2o =50+ [V () + o (17)
0

2\/geg; = &, + Ewg + [\/§<a(:;> - kch)} o,

es: = ey = ey =0,

where &, &, &,, 05, ¢, @, are the same as Eqgs. (12), and o is a generalized coordinate for warping. Assume
that the curvature is small enough to assure that (Washizu, 1964):

Ve~ 1

Introducing stress resultants and moments defined by:

0.~ [ [oazan at= [ [(re-cnacan
Qf//fsgdédm Mgz//osndédn (18)
0, [ [wuscan. =~ [ [acazan

lead to the equivalent constitutive equations described with generalized strains and generalized coordinate
for warping.
The minimum potential energy principle of the entire beam can be written as

5U—5A(@f7w}+bMT{¢Dw=0- (19)

Equilibrium Egs. (9) described with generalized displacements can be derived and another equation
which involves the St.Venant torsional warping function is:

(] o) o J [ ()
//{K )“‘“’}T“ [(aag;)—kw}rsn}didn:o. o)
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Besides, boundary conditions (13) and the following boundary condition can also be obtained
1
[//q)asdfdn] =0. (21)
0

4. The solving process of the generalized coordinate for warping

Equations for the static problem of the beam include: variational Eq. (19), geometry Egs. (12), and
equivalent constitutive Eqgs. (18) as well as Eq. (20). Substituting Egs. (17) into Eqgs. (8), then substituting
the results obtained into Eq. (20), we have

E/ / ple; +nol — éw:] + o + kDo + kDo’ } dEdy — ksE/ /D{.ss + nwe — o, + o + kDo}

st (&) e [(9) oo [3) 4o

X {3;7—‘1-6(1)54‘ |:<2_:§> _ké(p:| OC} didr]zO, (22)
where

o= [ 1) (@) seo

Substituting Egs. (17) into Egs. (8), then substituting the results obtained into Egs. (18), one obtains

O, = EAgs + EkDo+ ES:w; — ES, o, + E/ / pdédnd,

0; = GAe: — GS:w5 + G// [<2—(§) + k,,go} dédna,
Op
0,= GA8,1+GS,1a)S+G// o —kep| dldna,
1) Gl1)
M= GS,e;, — GS¢e: + Glpows — G FH n— a &+ Ck:p 4 nky| dédna,
M; = ESze, + El:w; — El 0, + Ek; // KZ?) T <aa(:;> 571] dédno +E/ / nedédnd,
6(p a(p
M, = —ES,& + El,o, — El:yo; — Ek; // &n—=— dédnoc - //gpdédmc

in which, A is the area of the cross-section, S; and S, are the first moments of the cross-sectional area with
respect to the ¢- and n-axes, I and I, are the moments of inertia of the cross-sectional area, computed
about the ¢- and n-axes, Iz, is the product of inertia, and I, = I + I,. Six unknown generalized strains
can be now obtained from Egs. (23), implying
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%(D“Q + DM+ DisM,) + kH o + Hyo
é(DZI O; + DnQ, + DiM;) + Hsua,
é(DzzQ + D0, + D33Ms) + Hao,
Wy é(Dzan + D330, + DizMj ) + Hsoa,
¢ é(Dles + Ds;M: + DssM,) + kH o + H7d',
w, = é(DBQ + Ds;M ¢ + DesM) + ksHgor + Hoo!',
Dy = & 151'77 Dy, = 15 ICfﬂSn, Dy, = oS —fchn’ Dy, S *[PA,
D D, Dy D,
Dy _ng' , Dy = _ngjv D3, :Sg ;jPA, D33 _%,
Dy = — g—z, Dsy = L DIIHA , Ds3= —_I§’7AD—:— SeSy , D = —Sé ;lléA )

Dy = (I, A —21.S:S, — I1,A + 1,5% + I:S,),
Dy = —A(lpA - S; - S)),

[(IeDy = I2,)D + (IS — 1,S:)J7 + (1 S: — 1:5,)J5]/Dn,
(el — 1)1 + (I Sy — 1,Se) s + (IySe — 1Sy)J 6] /Dy,
[(IPA S2)2 — S:SyJs — S:AJ4]/Ds,

[=SeSySa + (Ipd — S3)J3 + S,AJ4] /D,

= (S:4J, — Sy,AJ3 — A J4)/D2,
[
[
[
[

IcnS I,7S5)D + (['IA - Si)J7 + (Sisn - IﬁnA)JS}/DI»

(

(IcnSn InSc’)Jl + (IVIA - S;)JS + (Sc“Sn - IénA)JG]/Dla
ISy = 12yS2)D + (Ieyd — Sz8,)J7 + (52— 1:4)J5] /Dy,
ISy — ISl + (TIeyd — SeS,) s + (ST — 1:A)Jg] /D1

w= [ 1@ - @)afsson a= [ [|(G)n(&7)e] eon

2859

.,8), which depend only on the curvature and geometry of the beam, are defined as the
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Substituting Eqs. (24) and their derivatives &, o, o] into Eq. (22), we establish the differential equation
of a:

1 Uy + Hols — HyJo — HaD — HiJy + HoJy) | 1
(HyJ1 + H7Js — HoJg + 1) (HyJ\ + HJs — HoJo + 1)

X {k;H,J1 + k. HeJs —k.HgJs + K. / / eDAdédy — KCH\D — k2 HeJ 7 + kK2HgJ s — k / / Dzdédn}

G
X o — HiJ, +HyJy + HsJy + + k, déd
E(H>J\ +H7Js — H9J6+F){ 2 o e //[( ) ](p} cd

1 /
// |:< >—k5(p:| dédn}a_FE(Hle+H7J5—H9J6+F> [D11J1+D12J5—D13J6)QS

+(D1aJ1 + DsyJs — DsyJ6)M'. + (D13J 1 + DssJs — D3J )M, — ks(DiD + D12J7 — D13J ) Oy
— (Da1J2 + DnJ3 — DaJs)Q; — (DanJ> + D3nJ 5 + D;3J4)Q,, + (D23Jy — D33J3 + DysJ 4)M.
— ky(D12D + DsyJ7 — Ds3J3)M : — ky(D13D + Ds3J7 — De3Jg )M, = 0, (25)

where

F://q)zdﬁdn.

Eq. (25) can be written in the form:
o 4 gy ()0 + gy(s)o = f(s). (26)

This is a second order ordinary non-homogeneous linear differential equation with variable coefficients.
The solution to such an equation is the sum of two functions ¢, the complementary solution to the homo-
geneous equation,

o +qi(s)or + gp(s)oe = 0, (27)
and any particular solution o to

(@) +qi(s)(2") +gqls)e” = £ (s). (28)

Once the relation among k1, k, and arc coordinate s is determined, we may find its solution. The general
solving steps are as follows:

Let o(s) and oy(s) be any two linear independent solutions to the homogeneous Eq. (27), then the com-
plete solution to Eq. (26) is:

o= ClOCl(S) + CzO(z(S) + O(*, (29)

in which o™ is a particular solution to Eq. (26). Thus, {w} and {&} can be expressed with {Q}, {M}, the
generalized coordinate for warping « and integration constants ¢;, ¢c;. Now the rest is to determine integra-
tion constants {Qy}, {My}, {@o}, {Uy} as well as ¢; and c».

5. The generalized coordinate for warping of a plane curved beam under a concentrated force at the free end of
the beam and two uniformly distributed loads

ks =0 and 0 = 5n/6 in Eqs. (3) is just the situation of a plane curved beam (see Fig. 3a), and Fig. 3b
illustrates the uniform equilateral triangle cross-section at the free end of the beam. It should be note that
¢- and n-axes are a set of principal axes through the centroid on the cross-section. Fix the origin of the rect-



A.M. Yu et al. | International Journal of Solids and Structures 43 (2006) 2853-2867 2861
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Fig. 3. A plane curved beam with equilateral triangle cross-section: (a) Axis of a plane curved beam and (b) cross-section at the free
end of the beam.

angular coordinate system at the end of the beam (s = 0), the axis of the beam being on the plane Oxy. The
loads acting are:

{my={0}, {p}=00p.p)"

If the axis of the beam is a circle with radius a, one has:
p= f, ke = kysin0, k, =k cos0,
a
x=asinf, y=a(l—cosp).

Eq. (25) can be reduced to:

1) s [T 5
’ E(r—i—%{/”(aé)“‘""’} azan [ [|(Gr) ko] dcan—7 1o

= h0: + /oM, (30)

where
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The solution to Eq. (30) must be:
o = cichos + cyshas + o

where

(o 1) ol 1) el w5}

Thus, the complete solution of Eq. (30) becomes:

o = cichis + coshas

Si
BGETS!
I

V3 V3

(kF +a)
Lol S g2 =2 V3 2| S 22
+§p5a |:Slnﬂ—a&2(kl+a) —7[7"61 Slnﬂ—ﬁ(kl+d) .
Using Eqgs. (10) and (15), we have

. 1 . V3 .
Mg =M cos f+ Mo sin f + O,y + EpgaQ(smﬁ - p) - 7p,,a2(smﬁ - p),

V3 V3 1 V3

M. =7M05 sin f§ — MOg cos f + MOn +3 Q()sy > Qo: ) — QX — P,y
1 1 V3 V3 V3 1

M, —2MoSsmﬁ MoQCOSﬁ - On_TQosy Qog - Q X+ Day,

, V3 1
Qs :QOS COs ﬁ + Q0§ s ﬁ + TPEy + Epny?
V3

. 3 1 1 . 3 .
0 ZTQOS sin f§ — %Qog cos fi + EQon - Zpga(S sin ff + ) — %p”a(smﬁ - p),

Q;] :%QOS Sinﬁ - %QO@ COSﬁ - \/7§Q0;1 - ?péa(Sinﬂ - B) - %pt]a(Sinﬂ_F 3ﬁ)7

B
0 :gooscosﬁJrq)oésinﬂJracosﬁ/ (wscosﬁJrfwgsinBJr;wﬂsin,B)dﬂ
0
B
+asinﬁ/ <wssin[3—?wwosﬁ—éw,,cosﬁ)dﬁ,
0

V3 V3 1
P = 3 —— @os SIn ff — (P0c cosf+ 3 (/)Or]

B
+\/7§a sinﬁ/ <a)s COSﬁ+?@g sinﬁ+%w,, sinﬂ) dp
0

{QOSslnﬁ On: o5~ X300, (K + >+Tp¢a[ s (K +22) - sinﬁ}

— 2P {% (ki + &%) + sin ﬁ} } L {MOs cos i 4+ Moz sin ff — Qy,a {cosﬁ - % (k7 + &2)}

(32)
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3 ’ . 3 1 I
— %acosﬁ/ (ws sin ff — %wé cosfl — 3 cos[f) dp +Za/ (wé - \/§w,,) dg,
0 0
I 1 V3 1. # V3o 1.
Py =5 Pos sinf§ — i(pogvcosﬁ — 5 Poy +§asmﬁ/0 (cuscosﬁ -‘rng sin f3 +§w,1 s1nﬂ> dp
1 y . 3 1
——acosﬁ/ <w551nﬂ—£a)5cosﬁ——w,7cos/3> ﬁ—— / \/_a),7 )dp,
2 0 2 2
. Uy V3 . 1.
us =Upscos f + Uz sin f + acos f8 A £ COS f§ — —-sin Ble: +o,) — 5 sin Bley — @) | dp
B 3 1
+a sinﬁ/0 [Ss sin f§ — \/7~ cos f(e: + @,) + 3 cos fi(e, — ‘Pg)] dp,

3 .
——asinf§

uC;ZEUOSsinB—\/TgUogcosﬁJr%Uo,,+ >

2

’ V3 1
X /o [es cos f8 +—5- sin Ble: + o) +5 sin Bley, — (Pg)‘| dp

B
— ?acosﬁ/o las sin B — ? cos ez + @) — % cos fi(e; — (pi)] dp

B
+ %a/o (e + @) — V3(e, — ®:)]dB,

1 1 3
2UOSsmﬁ— Ugpscos ff — \é_Uow

I
+ %a sinﬁ/0 [«Cs cosf+ ? sin B(e: + @,) — % sin fi(e, — 99:5)] dp

1 b
— Eacosﬁ/o

/}
+—a/ (e:+@,) — 3( — ;)| dp. (33)

g sin f§ — ? cos B(e: + @) — % cos (e, — (ch)] dp

If the beam is fixed at s = 0 and loaded by a concentrated force F applied at the other end (s = /) in the
vertical direction (see Fig. 3b). The boundary conditions are:

= O(ﬁ = 0)’ U = U()g = UO'? = 07 Pos = Pog = Poy = 07 o= Oa
V3

1 /
:l(ﬁzﬁl)7 Qs:07 ch:EFa Qn:7F> Ms:MCf:M17:O> OC:O,

where [/ = na/2, the integration constants determined by the aforementioned conditions are
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Fig. 4. (a) Horizontal displacement Up of point P at the free end of the beam under a concentrated force F= 25 N applied at the free
end and uniformly distributed loads p: = 20 N/cm, p,. (b) Horizontal displacement U, of point P at the free end of the beam under a
concentrated force F =25 N applied at the free end and uniformly distributed loads p¢, p, = 10 N/cm. (c) Vertical displacement Vp of
point P at the free end of the beam under a concentrated force F= 25N applied at the free end and uniformly distributed loads
pe =20 N/cm, p,. (d) Vertical displacement ¥p of point P at the free end of the beam under a concentrated force F =25 N applied at
the free end of and uniformly distributed loads pe, p, = 10 N/cm. (¢) Warping displacement Wp of point P at the free end of the beam
under a concentrated force F=25N applied at the free end and uniformly distributed loads p; =20 N/cm, p,. (f) Warping
displacement Wp of point P at the free end of the beam under a concentrated force F =25 N applied at the free end and uniformly
distributed loads p¢, p, = 10 N/cm.
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Qos =§pga + %pna + %F Qo: = — ?pga - %pqay Qo = 410g \/jnpﬂa +F,
My = f%péaz(l — g) Jr\/Tgp,?az(l — g) +Fa, My = f%péaz +\/7§p,7a2 — Fa,
Mo, = — \/75195612 LG

= (sz 5 |2 ro \/ngn(k% +2%) (kfj—(&—zﬁcz) (MOS JFI;Qon)v
ey =—cith(al) — m %Qog + gpg(kf +3') - %Pn(kf +)

/2

1 L V3 _
+m Qon zpc (k% + ocz) +f2pna(k% + 052) ) (34)

20

So far, the solutions to this problem have been obtained. The beam in Fig. 3 is made of steel with the
following properties

E =2.106 x 10° MPa, G =0.816 x 10° MPa,
b=1732cm, a=48cm.

The St. Venant torsional warping function (Sokolnikoff, 1956)

o 1 s am
¢ =— 6b( 3&%) = 10'392('7 3¢&).

Let Up and Vp present the displacements in the horizontal and vertical directions of point P on the cross-
section (f = %) shown in Fig. 3b, respectively, and Wp present the displacement in the s direction of point P.
theoretical results for Up, Vp and Wp are obtained using the equations developed in this paper and com-
pared with a 3-D finite element analysis (referred as the FEM results), according to the ANSYS program.

80 T T T T T T T T T T
—— PRESENT THEORY

60} - FEM ]

40F
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2 3 -2?5 é -1?5 1 -O,IS l] ﬂ,lﬁ 1 1,I5
&(cm)

Fig. 5. Distribution of the axial stress 5 on £-axis at the root of the beam under uniformly distributed loads p: = 20 N/cm, p, = 10

N/cm and a concentrated force F= 25N applied at the free end.
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Fig. 6. (a) Distribution of shear stress 7,: on £-axis at the root of the beam under uniformly distributed loads p: = 20 N/cm, p, = 10
N/cm and a concentrated force F =25 N applied at the free end. (b). Distribution of the shear stress t,, on ¢-axis at the root of the
beam under uniformly distributed loads p; = 20 N/cm, p, = 10 N/cm and a concentrated force F= 25N applied at the free end.

To analyze the beam shown in Fig. 3 by the finite element method (FEM), we partition it into 35299 three-
dimensional solid elements (SOLID 92), and the total number of nodal points is 54482. These cases for
different values of p; and p,, are shown in Fig. 4(a)—(f). It is evident that the theoretical results are very close
to the FEM results.

It is also interesting to compute the stress distributions at the root (f = 0) of the beam. Fig. 5 shows the
distribution of the axial stress g, on the &-axis at the root of the beam under uniformly distributed loads
pe=20N/cm, p, =10 N/cm and a concentrated force F =25 N applied at the free end. Here, the axial
stress distribution is in close agreement between theoretical results and the FEM results. While Fig. 6 shows
the distributions of the shear stresses 7, and g, on the £-axis at the root of the beam, respectively.

6. Conclusions

A differential equation of generalized warping coordinate o for naturally curved and twisted beams with
general cross-sectional shapes subjected to arbitrary load has been derived. The numerical results obtained
by solving the present equations are very close to the FEM results for different values of p: and p,. The
highlights of this paper are as follows:

(i) From mathematical point of view, the boundary value problem for the theory of the beams is fully
defined in Egs. (12), (13), (18) and (29). The complex structural behavior of the beams is modeled
accurately as the following features are included shear deformations and torsion-related warping.

(i1) It should be emphasized that this theory is not limited to the beams with an equilateral triangle cross-
section, it can be extended to those with general cross-sectional shapes. Once the generalized coordi-
nate for warping « is found, the solutions (23) and (24) remain valid.

(iii) This theory is not limited to the beams with solid cross section either. In the case of thin-walled special
curved beams made of either isotropic or composite materials, it can also be extended as long as sev-
eral assumptions given by Washizu (1964) remain valid. Of course, the stress—strain (constitutive)
relations for the beams with thin-walled cross-sections should be supplied.the constitutive equations,
providing an additional information about the material and geometrical properties of the body under
consideration, complete the formulation of the boundary value problem for the 1-D theory.
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