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Abstract

This paper presents an efficient procedure for analyzing naturally curved and twisted beams with general cross-sec-
tional shapes. The hypothesis concerning the cross-sectional shapes of the beams is abandoned in this analysis, and rel-
atively general equations are derived for the analysis of such a structure. Solving directly such equations for various
boundary conditions, which take into account the effects of torsion-related warping as well as transverse shear defor-
mations, can yield the solutions to the problem. The solutions can be used to calculate various internal forces, stresses,
strains and displacements of the beams. The present theory will be used to investigate the stresses and displacements of
a cantilevered curved beam subjected to action of arbitrary load. The numerical results are very close to the FEM
results.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Static and dynamic analysis of naturally curved and twisted beams has many important applications in
mechanical and civil engineering. The problem is urgently needed to be thoroughly studied in engineering
structures, especially in bridge structures associated with curved beams. Washizu (1964) presented an
approximate theory of the beams and derived a system of governing equations. The unknowns in these
equations are the displacement components (us,un,ug,us,un,ug) together with a generalized warping
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coordinate (a). The solutions of these equations, however, were not obtained. The work of Aimin et al.
(2002), developed such a theory and provided such an example where the beams are considered to have
a double symmetric cross-section, a fact which clearly restricts the applicability of these equations.

This paper aims to derive a differential equation for generalized warping coordinate a which involves the
St. Venant torsional warping function, the equation applicable to the case of the beams with general cross-
sectional shapes subjected to arbitrary load. Obviously, such a system of equations is of practical use for a
variety of engineering applications.

Let the locus of the cross-sectional centroid of a beam be a continuum curve in space, the tangential,
normal and bi-normal unit vectors of the curve l are t, n and b, respectively. The Frenet–Serret formulae,
for a smooth curve, is:
t0 ¼ k1n; n0 ¼ �k1t þ k2b; b0 ¼ �k2n; ð1Þ

where ðtÞ0 ¼ dðtÞ

ds , s, k1 and k2 are arc coordinate, curvature and torsion respectively of the curve.
In the cross-section of the beam we introduce n- and g-directions in coincidence with the principal axes

through the centroid O1, as shown in Fig. 1. The angle between the n-axis and normal n is represented as h,
which is generally a function of s. If the unit vectors of O1n and O1g are represented by in and ig, then
in ¼ n cos hþ b sin h;

ig ¼ �n sin hþ b cos h.
ð2Þ
From Eqs. (1) the following expressions are obtained:
t0 ¼ kgin � knig;

i0n ¼ �kgt þ ksig;

i0g ¼ knt � ksin;

ð3Þ
in which kn ¼ k1 sin h, kg ¼ k1 cos h, ks = k2 + h
0
.

The stress–strain relations of the material are given in the local rectangular coordinates in the form
(Washizu, 1964):
rkl ¼ rklðeabÞ; k; l; a; b ¼ 1; 2; 3; ð4Þ

where rkl and eij are the stress and strain tensors defined with respect to the local rectangular coordinates.
These tensors are related with those defined with respect to the curvilinear coordinates by the following
relationships:
iη b

iξ

θ n

t
O1

Fig. 1. Geometry of the beam.



A.M. Yu et al. / International Journal of Solids and Structures 43 (2006) 2853–2867 2855
rkl ¼ oyk

oaj
� oyl

oaq
sjq; ð5Þ

ekl ¼
oaj

oyk
� oaq

oyl
fjq. ð6Þ
We shall denote the components of rkl and eab by (rs,rn,rg,ssn,ssg,sng) and (ess,enn,egg,esn,esg,eng),
respectively, and the assumptions based on the slenderness of the beam will be employed. The stress com-
ponents rn, rg and sng are assumed to be small compared with those remaining we may put (Washizu, 1964)
rn ¼ rg ¼ sng ¼ 0; ð7Þ

in the stress–strain relations. If the material of the beam is assumed to be isotropic, Eqs. (4) and (7) yield:
rs ¼ Eess; ssn ¼ 2Gesn; ssg ¼ 2Gesg; ð8Þ

in which E is Young�s modulus of elasticity and G is the shear modulus of the material.
2. Internal forces, equilibrium equations and geometry equations

Simplifying stress vectors to the centroid O1 on the cross-section A, the principal vector Q and principal
moment M can be obtained, of which components are respectively denoted by Qs, Qn, Qg and Ms, Mn, Mg,
so:
Q ¼ Qst þ Qnin þ Qgig; M ¼ M st þMnin þMgig;
where Qs is axial force, Qn and Qg are shear forces, Ms is torque, Mn and Mg are bending moments, as
shown in Fig. 2. the external forces and moments per unit length along the axis of the beam are indicated
by p and m as
p ¼ pst þ pnin þ pgig; m ¼ mst þ mnin þ mgig.
The equilibrium equations are:
d

ds
fQg � ½K � � fQg þ fpg ¼ f0g;

d

ds
fMg � ½K � � fMg � ½H � � fQg þ fmg ¼ f0g;

ð9Þ
s
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Fig. 2. Stress resultants developed on a typical beam element.
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where
fQg ¼ ½Qs Qn Qg�
T
; fMg ¼ ½M s Mn Mg�T;

fpg ¼ ½ps pn pg�
T
; fmg ¼ ½ms mn mg�T;

½K � ¼
0 kg �kn

�kg 0 ks

kn �ks 0

2
4

3
5; ½H � ¼

0 0 0

0 0 1

0 �1 0

2
4

3
5.
The general solutions are Hanwei and Peiyuan (1997) and Yuchun et al. (1999):
fQg ¼ ½A� � fQ0g �
Z s

0

½A�T � fpgds
� �

;

fMg ¼ ½A� � fM0g þ
Z s

0

½A�T � ð½H � � ½A� � ðfQ0g þ fQ�gÞ � fmgds
� �

;

ð10Þ
where {Q0} and {M0} are integration constants, fQ�g ¼ �
R s

0
½A�T � fpgds.

If the base vectors of special fixed right-handed rectangular coordinate system are ix, iy, iz, then:
½A� ¼
t � ix t � iy t � iz

in � ix in � iy in � iz

ig � ix ig � iy ig � iz

2
64

3
75. ð11Þ
The geometry equations are:
es ¼ u0s � kgun þ knug; en ¼ u0n þ kgus � ksug � ug;

eg ¼ u0g � knus þ ksun þ un; xs ¼ u0s � kgun þ knug;

xn ¼ u0n þ kgus � ksug; xg ¼ u0g � knus þ ksun;

ð12Þ
where, es, en, eg, xs, xn, xg are respectively generalized strains corresponding to generalized stresses Qs, Qn,
Qg, Ms, Mn, Mg and us, un, ug, us, un, ug are generalized displacements corresponding to loads ps, pn, pg, ms,
mn, mg. The boundary conditions should be given by prescribed the following qualities
Qs or us; Qn or un; Qg or ug; M s or us; Mn or un; Mg or ug ð13Þ
Eqs. (12) can be rewritten as:
d

ds
fug � ½K � � fug � fxg ¼ f0g;

d

ds
fug � ½K � � fug � ½H � � fug � feg ¼ f0g;

ð14Þ
where
fug ¼ ½us un ug�
T
; fug ¼ ½us un ug�T;

fxg ¼ ½xs xn xg�T; feg ¼ ½es en eg�T;
so the general solutions to the geometry equations are:
fug ¼ ½A� � ðfu0g þ fu�gÞ;

fug ¼ ½A� � fU0g þ
Z s

0

½A�T � ðfeg þ ½H � � ½A�ðfu0g þ fu�gÞÞds
� �

;
ð15Þ
in which {u0} and {U0} are integration constants, fu�g ¼
R s

0
½A�T � fxgds.
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3. The St.Venant torsional warping function and equivalent constitutive equations

Assuming that the deformations of the beam consist of stretching, bending and torsion,then the displace-
ment field can be written in the following form:
u ¼ W t þ U in þ V ig; ð16Þ

in which:
W ¼ usðsÞ þ gunðsÞ � nugðsÞ þ aðsÞuðn; gÞ;
U ¼ unðsÞ � gusðsÞ; V ¼ ugðsÞ þ nusðsÞ;
here, u(n,g) is the warping function of the St.Venant torsion of a cylindrical shaft which has the same cross-
section as the beam under consideration (Timoshenko and Goodier, 1974). Eq. (16) takes into account the
effects of torsion-related warping as well as that of transverse shear deformations. The distributions of
strain ess, esn and esg, on the cross-section, are:
ffiffiffi
g
p

ess ¼ es þ gxn � nxg þ
ffiffiffi
g
p

ua0 þ ks

ou
on

� �
g� ou

og

� �
n

� �
a;

2
ffiffiffi
g
p

esn ¼ en � gxs þ
ffiffiffi
g
p ou

on

� �
þ kgu

� �
a;

2
ffiffiffi
g
p

esg ¼ eg þ nxs þ
ffiffiffi
g
p ou

og

� �
� knu

� �
a;

enn ¼ egg ¼ eng ¼ 0;

ð17Þ
where es, en, eg, xs, xn, xg are the same as Eqs. (12), and a is a generalized coordinate for warping. Assume
that the curvature is small enough to assure that (Washizu, 1964):
ffiffiffi

g
p � 1.
Introducing stress resultants and moments defined by:
Qs ¼
Z Z

rs dndg; M s ¼
Z Z

ðssgn� ssngÞdndg;

Qn ¼
Z Z

ssn dndg; Mn ¼
Z Z

rsgdndg

Qg ¼
Z Z

ssg dndg; Mg ¼ �
Z Z

rsndndg;

ð18Þ
lead to the equivalent constitutive equations described with generalized strains and generalized coordinate
for warping.

The minimum potential energy principle of the entire beam can be written as
dU � d
Z l

0

ðfpgT � fug þ fmgT � fugÞds ¼ 0. ð19Þ
Equilibrium Eqs. (9) described with generalized displacements can be derived and another equation
which involves the St.Venant torsional warping function is:
Z Z

urs dndg

� �0
� ks

Z Z
ou
on

� �
g� ou

og

� �
n

� �
rs dndg

�
Z Z

ou
on

� �
þ kgu

� �
ssn þ

ou
og

� �
� knu

� �
ssg

� �
dndg ¼ 0. ð20Þ
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Besides, boundary conditions (13) and the following boundary condition can also be obtained
Z Z
urs dndg

� �l

0

¼ 0. ð21Þ
4. The solving process of the generalized coordinate for warping

Equations for the static problem of the beam include: variational Eq. (19), geometry Eqs. (12), and
equivalent constitutive Eqs. (18) as well as Eq. (20). Substituting Eqs. (17) into Eqs. (8), then substituting
the results obtained into Eq. (20), we have
E
Z Z

ufe0s þ gx0n � nx0g þ ua00 þ k0sDaþ ksDa0gdndg� ksE
Z Z

Dfes þ gxn � nxg þ ua0 þ ksDag

� dndg� G
Z Z

ou
on

� �
þ kgu

� �
en � gxs þ

ou
on

� �
þ kgu

� �
a

� �
dndg� G

Z Z
ou
og

� �
� knu

� �

� eg þ nxs þ
ou
og

� �
� knu

� �
a

� �
dndg ¼ 0; ð22Þ
where
D ¼
Z Z

ou
on

� �
g� ou

og

� �
n

� �
dndg
Substituting Eqs. (17) into Eqs. (8), then substituting the results obtained into Eqs. (18), one obtains
Qs ¼ EAes þ EksDaþ ESnxn � ESgxg þ E
Z Z

udndga0;

Qn ¼ GAen � GSnxs þ G
Z Z

ou
on

� �
þ kgu

� �
dndga;

Qg ¼ GAeg þ GSgxs þ G
Z Z

ou
og

� �
� knu

� �
dndga;

M s ¼ GSgeg � GSnen þ GIPxs � G
Z Z

ou
on

� �
g� ou

og

� �
nþ nknuþ gkgu

� �
dndga;

Mn ¼ ESnes þ EInxn � EIngxg þ Eks

Z Z
ou
on

� �
g2 � ou

og

� �
ng

� �
dndgaþ E

Z Z
gudndga0;

Mg ¼ �ESges þ EIgxg � EIngxn � Eks

Z Z
ou
on

� �
ng� ou

og

� �
n2

� �
dndga� E

Z Z
nudndga0;

ð23Þ
in which, A is the area of the cross-section, Sn and Sg are the first moments of the cross-sectional area with
respect to the n- and g-axes, In and Ig are the moments of inertia of the cross-sectional area, computed
about the n- and g-axes, Ing is the product of inertia, and Ip = In + Ig. Six unknown generalized strains
can be now obtained from Eqs. (23), implying
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es ¼
1

E
ðD11Qs þ D12Mn þ D13MgÞ þ ksH 1aþ H 2a

0;

en ¼
1

G
ðD21Qn þ D22Qg þ D23M sÞ þ H 3a;

eg ¼
1

G
ðD22Qn þ D32Qg þ D33M sÞ þ H 4a;

xs ¼
1

G
ðD23Qn þ D33Qg þ D43M sÞ þ H 5a;

xn ¼
1

G
ðD12Qs þ D52Mn þ D53MgÞ þ ksH 6aþ H 7a

0;

xg ¼
1

G
ðD13Qs þ D53Mn þ D63M sÞ þ ksH 8aþ H 9a

0;

ð24Þ
where
D11 ¼
I2
ng � InIg

D1

; D12 ¼
IgSn � IngSg

D1

; D13 ¼
IngSn � InSg

D1

; D21 ¼
S2

g � IP A

D2

;

D22 ¼
SnSg

D2

; D23 ¼ �
SnA
D2

; D32 ¼
S2

n � IP A

D2

; D33 ¼
SgA
D2

;

D43 ¼ �
A2

D2

; D52 ¼
S2

g � IgA

D1

; D53 ¼
�IngAþ SnSg

D1

; D63 ¼
S2

n � InA

D1

;

D1 ¼ ðI2
ngA� 2IngSnSg � InIgAþ IgS2

n þ InS2
gÞ;

D2 ¼ �AðIP A� S2
n � S2

gÞ;
H 1 ¼ ½ðInIg � I2

ngÞDþ ðIngSg � IgSnÞJ 7 þ ðIngSn � InSgÞJ 8�=D1;

H 2 ¼ ½ðInIg � I2
ngÞJ 1 þ ðIngSg � IgSnÞJ 5 þ ðIngSn � InSgÞJ 6�=D1;

H 3 ¼ ½ðIP A� S2
gÞJ 2 � SnSgJ 3 � SnAJ 4�=D2;

H 4 ¼ ½�SnSgJ 2 þ ðIP A� S2
nÞJ 3 þ SgAJ 4�=D2;

H 5 ¼ ðSnAJ 2 � SgAJ 3 � A2J 4Þ=D2;

H 6 ¼ ½ðIngSg � IgSnÞDþ ðIgA� S2
gÞJ 7 þ ðSnSg � IngAÞJ 8�=D1;

H 7 ¼ ½ðIngSg � IgSnÞJ 1 þ ðIgA� S2
gÞJ 5 þ ðSnSg � IngAÞJ 6�=D1;

H 8 ¼ ½ðInSg � IngSnÞDþ ðIngA� SnSgÞJ 7 þ ðS2
n � InAÞJ 8�=D1;

H 9 ¼ ½ðInSg � IngSnÞJ 1 þ ðIngA� SnSgÞJ 5 þ ðS2
n � InAÞJ 6�=D1.
where, Ji(i = 1,2, . . ., 8), which depend only on the curvature and geometry of the beam, are defined as the
following integrations given by
J 1 ¼
Z Z

udndg; J 2 ¼
Z Z

ou
on

� �
þ kgu

� �
dndg; J 3 ¼

Z Z
ou
og

� �
� knu

� �
dndg;

J 4 ¼
Z Z

ou
on

� �
g� ou

og

� �
nþ gkguþ nknu

� �
dndg; J 5 ¼

Z Z
gudndg; J 6 ¼

Z Z
nudndg;

J 7 ¼
Z Z

ou
on

� �
g2 � ou

og

� �
ng

� �
dndg; J 8 ¼

Z Z
ou
on

� �
ng� ou

og

� �
n2

� �
dndg.
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Substituting Eqs. (24) and their derivatives e0s, x0n, x0g into Eq. (22), we establish the differential equation
of a:
a00 þ ksðH 1J 1 þ H 6J 5 � H 8J 6 � H 2D� H 7J 7 þ H 9J 8Þ
ðH 2J 1 þ H 7J 5 � H 9J 6 þ CÞ a0 þ 1

ðH 2J 1 þ H 7J 5 � H 9J 6 þ CÞ

� k0sH 1J 1 þ k0sH 6J 5 � k0sH 8J 6 þ k0s

Z Z
uDdndg� k2

s H 1D� k2
s H 6J 7 þ k2

s H 8J 8 � k2
s

Z Z
D2 dndg

� �

� a� G
EðH 2J 1 þ H 7J 5 � H 9J 6 þ CÞ H 3J 2 þ H 4J 3 þ H 5J 4 þ

Z Z
ou
on

� �
þ kgu

� �2

dndg

(

þ
Z Z

ou
og

� �
� knu

� �2

dndg

)
aþ 1

EðH 2J 1 þ H 7J 5 � H 9J 6 þ CÞ ½D11J 1 þ D12J 5 � D13J 6ÞQ0s

þðD12J 1 þ D52J 5 � D53J 6ÞM 0
n þ ðD13J 1 þ D53J 5 � D63J 6ÞM 0

g � ksðD11Dþ D12J 7 � D13J 8ÞQs

� ðD21J 2 þ D22J 3 � D23J 4ÞQn � ðD22J 2 þ D32J 3 þ D33J 4ÞQg þ ðD23J 2 � D33J 3 þ D43J 4ÞM s

� ksðD12Dþ D52J 7 � D53J 8ÞMn � ksðD13Dþ D53J 7 � D63J 8ÞMg� ¼ 0; ð25Þ
where
C ¼
Z Z

u2 dndg.
Eq. (25) can be written in the form:
a00 þ q1ðsÞa0 þ q2ðsÞa ¼ f ðsÞ. ð26Þ

This is a second order ordinary non-homogeneous linear differential equation with variable coefficients.

The solution to such an equation is the sum of two functions ac, the complementary solution to the homo-
geneous equation,
a00c þ q1ðsÞa0c þ q2ðsÞac ¼ 0; ð27Þ

and any particular solution a* to
ða�Þ00 þ q1ðsÞða�Þ
0 þ qðsÞa� ¼ f ðsÞ. ð28Þ
Once the relation among k1, k2 and arc coordinate s is determined, we may find its solution. The general
solving steps are as follows:

Let a1(s) and a2(s) be any two linear independent solutions to the homogeneous Eq. (27), then the com-
plete solution to Eq. (26) is:
a ¼ c1a1ðsÞ þ c2a2ðsÞ þ a�; ð29Þ

in which a* is a particular solution to Eq. (26). Thus, {x} and {e} can be expressed with {Q}, {M}, the
generalized coordinate for warping a and integration constants c1, c2. Now the rest is to determine integra-
tion constants {Q0}, {M0}, {u0}, {U0} as well as c1 and c2.
5. The generalized coordinate for warping of a plane curved beam under a concentrated force at the free end of

the beam and two uniformly distributed loads

ks = 0 and h = 5p/6 in Eqs. (3) is just the situation of a plane curved beam (see Fig. 3a), and Fig. 3b
illustrates the uniform equilateral triangle cross-section at the free end of the beam. It should be note that
n- and g-axes are a set of principal axes through the centroid on the cross-section. Fix the origin of the rect-
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Fig. 3. A plane curved beam with equilateral triangle cross-section: (a) Axis of a plane curved beam and (b) cross-section at the free
end of the beam.
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angular coordinate system at the end of the beam (s = 0), the axis of the beam being on the plane Oxy. The
loads acting are:
fmg ¼ f0g; fpg ¼ ½0 pn pg�
T

If the axis of the beam is a circle with radius a, one has:
b ¼ s
a
; kn ¼ k1 sin h; kg ¼ k1 cos h;

x ¼ a sin b; y ¼ að1� cos bÞ.
Eq. (25) can be reduced to:
a00 � G

EðC� J2
5

In
Þ

Z Z
ou
on

� �
þ kgu

� �2

dndgþ
Z Z

ou
og

� �
� knu

� �2

dndg� J 2
3

A
� J 2

4

IP

( )
a

¼ f1Qn þ f2M s; ð30Þ
where
f1 ¼
J5

In
� J3

A

	 

E C� J2

5

In

	 
 ; f 2 ¼
J4

IP
� kg

J5

In

	 

E C� J2

5

In
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The solution to Eq. (30) must be:
a ¼ c1ch�asþ c2sh�asþ a� ð31Þ

where
�a ¼


G
Z Z

ou
on

� �
þ kgu

� �2

dndgþ
Z Z

ou
og

� �
� knu

� �2

dndg� J 2
3

A
� J 2

4

IP

( )
E C� J 2

5

In

� ��vuut

Thus, the complete solution of Eq. (30) becomes:
a ¼ c1ch�asþ c2sh�as

þ f1

ðk2
1 þ �a2Þ

1

2
Q0s sin b� 1

2
Q0n cos b�

ffiffiffi
3
p

2�a2
Q0gðk2

1 þ �a2Þ þ
ffiffiffi
3
p

4
pna

s
a�a2
ðk2

1 þ �a2Þ � sin b

� �(

� 1

4
pga

3s
a�a2
ðk2

1 þ �a2Þ þ sin b

� �)
þ f2

ðk2
1 þ �a2Þ

M0s cos bþM0n sin b� Q0ga cos b� 1

�a2
ðk2

1 þ �a2Þ
� �(

þ 1

2
pna2 sin b� s

a�a2
ðk2

1 þ �a2Þ
� �

�
ffiffiffi
3
p

2
pga2 sin b� s

a�a2
ðk2

1 þ �a2Þ
� �)

. ð32Þ
Using Eqs. (10) and (15), we have
M s ¼M0s cos bþM0n sin bþ Q0gy þ 1

2
pna2ðsin b� bÞ �

ffiffiffi
3
p

2
pga2ðsin b� bÞ;

Mn ¼
ffiffiffi
3
p

2
M0s sin b�

ffiffiffi
3
p

2
M0n cos bþ 1

2
M0g þ

1

2
Q0sy �

1

2
Q0nx�

ffiffiffi
3
p

2
Q0gx� pgay;

Mg ¼
1

2
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If the beam is fixed at s = 0 and loaded by a concentrated force F applied at the other end (s = l) in the
vertical direction (see Fig. 3b). The boundary conditions are:
s ¼ 0ðb ¼ 0Þ; U 0s ¼ U 0n ¼ U 0g ¼ 0; u0s ¼ u0n ¼ u0g ¼ 0; a ¼ 0;

s ¼ lðb ¼ blÞ; Qs ¼ 0; Qn ¼
1

2
F ; Qg ¼

ffiffiffi
3
p

2
F ; M s ¼ Mn ¼ Mg ¼ 0; a0 ¼ 0;
where l = pa/2, the integration constants determined by the aforementioned conditions are



Fig. 4. (a) Horizontal displacement UP of point P at the free end of the beam under a concentrated force F = 25 N applied at the free
end and uniformly distributed loads pn = 20 N/cm, pg. (b) Horizontal displacement UP of point P at the free end of the beam under a
concentrated force F = 25 N applied at the free end and uniformly distributed loads pn, pg = 10 N/cm. (c) Vertical displacement VP of
point P at the free end of the beam under a concentrated force F = 25 N applied at the free end and uniformly distributed loads
pn = 20 N/cm, pg. (d) Vertical displacement VP of point P at the free end of the beam under a concentrated force F = 25 N applied at
the free end of and uniformly distributed loads pn, pg = 10 N/cm. (e) Warping displacement WP of point P at the free end of the beam
under a concentrated force F = 25 N applied at the free end and uniformly distributed loads pn = 20 N/cm, pg. (f) Warping
displacement WP of point P at the free end of the beam under a concentrated force F = 25 N applied at the free end and uniformly
distributed loads pn, pg = 10 N/cm.
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. ð34Þ
So far, the solutions to this problem have been obtained. The beam in Fig. 3 is made of steel with the
following properties
E ¼ 2.106� 105 MPa; G ¼ 0.816� 105 MPa;

b ¼ 1.732 cm; a ¼ 48 cm.
The St. Venant torsional warping function (Sokolnikoff, 1956)
u ¼ � 1

6b
ðg3 � 3n2gÞ ¼ � 1

10.392
ðg3 � 3n2gÞ.
Let UP and VP present the displacements in the horizontal and vertical directions of point P on the cross-
section (b ¼ p

2
) shown in Fig. 3b, respectively, and WP present the displacement in the s direction of point P.

theoretical results for UP, VP and WP are obtained using the equations developed in this paper and com-
pared with a 3-D finite element analysis (referred as the FEM results), according to the ANSYS program.
Distribution of the axial stress rs on n-axis at the root of the beam under uniformly distributed loads pn = 20 N/cm, pg = 10
and a concentrated force F = 25 N applied at the free end.



Fig. 6. (a) Distribution of shear stress ssn on n-axis at the root of the beam under uniformly distributed loads pn = 20 N/cm, pg = 10
N/cm and a concentrated force F = 25 N applied at the free end. (b). Distribution of the shear stress ssg on n-axis at the root of the
beam under uniformly distributed loads pn = 20 N/cm, pg = 10 N/cm and a concentrated force F = 25 N applied at the free end.
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To analyze the beam shown in Fig. 3 by the finite element method (FEM), we partition it into 35299 three-
dimensional solid elements (SOLID 92), and the total number of nodal points is 54482. These cases for
different values of pn and pg are shown in Fig. 4(a)–(f). It is evident that the theoretical results are very close
to the FEM results.

It is also interesting to compute the stress distributions at the root (b = 0) of the beam. Fig. 5 shows the
distribution of the axial stress rs on the n-axis at the root of the beam under uniformly distributed loads
pn = 20 N/cm, pg = 10 N/cm and a concentrated force F = 25 N applied at the free end. Here, the axial
stress distribution is in close agreement between theoretical results and the FEM results. While Fig. 6 shows
the distributions of the shear stresses ssn and ssg on the n-axis at the root of the beam, respectively.
6. Conclusions

A differential equation of generalized warping coordinate a for naturally curved and twisted beams with
general cross-sectional shapes subjected to arbitrary load has been derived. The numerical results obtained
by solving the present equations are very close to the FEM results for different values of pn and pg. The
highlights of this paper are as follows:

(i) From mathematical point of view, the boundary value problem for the theory of the beams is fully
defined in Eqs. (12), (13), (18) and (29). The complex structural behavior of the beams is modeled
accurately as the following features are included shear deformations and torsion-related warping.

(ii) It should be emphasized that this theory is not limited to the beams with an equilateral triangle cross-
section, it can be extended to those with general cross-sectional shapes. Once the generalized coordi-
nate for warping a is found, the solutions (23) and (24) remain valid.

(iii) This theory is not limited to the beams with solid cross section either. In the case of thin-walled special
curved beams made of either isotropic or composite materials, it can also be extended as long as sev-
eral assumptions given by Washizu (1964) remain valid. Of course, the stress–strain (constitutive)
relations for the beams with thin-walled cross-sections should be supplied.the constitutive equations,
providing an additional information about the material and geometrical properties of the body under
consideration, complete the formulation of the boundary value problem for the 1-D theory.
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